Correlation between Pathological Characteristics and Young's Modulus Value of Spastic Gastrocnemius in a Spinal Cord Injury Rat Model
نویسندگان
چکیده
The goal of the present study were (1) to investigate the pathological characteristics of gastrocnemius muscle (GM) and quantitatively assess GM tissue stiffness in rat models with spinal cord injury (SCI) and (2) to explore the correlation between pathological characteristics changes and Young's modulus value of GM. 24 Sprague Dawley male rats were allocated into normal control groups and SCI model subgroups, respectively. GM stiffness was assessed with shear wave sonoelastography technology. All GMs were further analyzed by pathological examinations. GM weights were decreased, the ratio of type I fibers was decreased, and the ratio of type II fibers was increased in the GM in the model group. MyHC-I was decreased, while MyHC-II was increased according to the electrophoretic analysis in model subgroups. The elastic modulus value of GM was increased in the model group. A significant negative correlation was found between Young's modulus value of GM and the ratio of type I fibers of GM in model subgroup. Our studies showed that the stiffness of GM is correlated with pathological characteristics during the initial stages of SCI in rats. We also identified shear wave sonoelastography technology as a useful tool to assess GM stiffness in SCI rat models.
منابع مشابه
Changes in Urinary Bladder Structure and Systemic Inflammation Response Following Incomplete Transection versus Contusion Spinal Cord Injury in Rat Model
Objective- The current study was conducted to evaluate changes in the urinary bladder structure and leukocyte profile as an important index of the systemic inflammation response for two different types of spinal cord injury (SCI) in a rat model. Design- Experimental Study.Animals- Forty adult healthy female Sprague-Dawley rats.<br /...
متن کاملRepair of Spinal Cord Injury (SCI) Using Bone Marrow Stromal Cell Transfected with Adenoviral Vector Expressing Glial derived Neurotropic Factor (GDNF) in a Rat SCI Model
Back ground Subsequent to spinal cord injury many pathological changes may occur that could lead to inappropriate environment for repair. The Most important of such changes is the death of neurons. Exogenous administration of growth factors that modulate neuronal survival, synaptic plasticity, and neurotransmission has been proposed as a potential therapeutic treatment for SCI. Among these gr...
متن کاملMicroglial Activation in Rat Experimental Spinal Cord Injury Model
Background: The present study was designed to evaluate the secondary microglial activation processes after spinal cord injury (SCI). Methods: A quantitative histological study was performed to determine ED-1 positive cells, glial cell density, and cavitation size in untreated SCI rats at days 1, 2, and 4, and weeks 1, 2, 3, and 4. Results: The results of glial cell quantification along the 4900...
متن کاملO2: Flaxseed Reduces Proinflammatory Factors IL-1β, IL-18 and TNF-α in Injured Spinal Cord Rat Model
The pathophysiology of acute spinal cord injury (SCI) involves primary and secondary mechanisms of injury. Secondary injury mechanisms include inflammation, oxidative stress. The secondary inflammation of spinal cord tissue after SCI was critical for the survival of motor neuron and functional recovery. Flaxseed is a rich source of lignan phytoestrogen, α-linolenic acid. Flaxseed has rema...
متن کاملImprovement of Spinal Cord Injury in Rat Model via Transplantation of Neural Stem Cells Derived From Bone Marrow
Abstract Background & Aims: Cell therapy is among the novel therapeutic methods effective in the treatment of spinal cord injuries. The aim of the present study was using neural stem cells (NSCs) in treating contusion spinal cord injury in rat model. Methods: Bone marrow stromal cells (BMSCs) were isolated from adult rats...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017